

A Low Noise Broadband GaAs MESFET Monolithic Distributed Preamplifier

Al P. Freundorfer and P. Lionais

TU
1C

Department of Electrical and Computer Engineering
Queen's University
Kingston, Ontario
Canada K7L 3N6

Abstract

It is shown that the equivalent input noise current density of a distributed preamplifier of an optical receiver can be improved by using large gate line matching impedance. A monolithic GaAs MESFET distributed preamplifier utilizing this design consideration was fabricated. Using a 35 μm InGaAs p-i-n photodiode, it was shown to have an equivalent input noise current density of $8 \text{ pA}/\sqrt{\text{Hz}}$ and an 8 GHz bandwidth. To date, this is the best known result for a 0.8 μm GaAs MESFET process.

Introduction

As the bit rate of optical communications systems increases into the 10 Gb/s and beyond, there is interest in the development of large bandwidth low noise receivers[1]. A GaAs MESFET transimpedance preamplifier using a gate length of 0.5 μm was able to obtain an equivalent input noise density of $12 \text{ pA}/\sqrt{\text{Hz}}$ and a transimpedance gain of 44 dB Ω over a frequency range of DC - 7.8 GHz [1]. The first demonstrated distributed preamplifier had a bandwidth of 23 GHz with an input noise of greater than $20 \text{ pA}/\sqrt{\text{Hz}}$ [2] and was fabricated using a MESFET process that utilized a gate length of 0.3 μm . Recently, the distributed preamplifier was demonstrated using a HEMT process which had an improved noise performance of $15 \text{ pA}/\sqrt{\text{Hz}}$ over the operating frequency band of 2-18 GHz [3]. All the previously demonstrated distributed preamplifiers used a gate line impedance of 50Ω [2][3].

It is shown that an improved noise performance can be obtained by using a gate line impedance of 100Ω . A single photodiode distributed preamplifier was constructed using a 0.8 μm GaAs MESFET process available at Northern Telecom (NT). This distributed preamplifier was shown to have a bandwidth of 8 GHz. It also has an equivalent input noise current density of $8 \text{ pA}/\sqrt{\text{Hz}}$, which gives a predicted receiver sensitivity of -21 dBm for a 10 Gb/s intensity modulated direct detection system. To date, this is the best known result for a 0.8 μm GaAs MESFET process.

Preamplifier Design

A simplified schematic of the optical preamplifier is shown in Fig. 1. The inductors L_g and the input capacitors of the MESFET C_{gs} form a transmission line with an impedance equal to $Z_{ng} = \sqrt{L_g/C_{gs}}$. Similarly, the drain line impedance is given by $Z_{nd} = \sqrt{L_d/C_{ds}}$. The gate and drain lines are matched with the terminating resistors equal to Z_{ng} and Z_{nd} so that input and output impedances of the preamplifier remain constant over a large frequency bandwidth. The magnitude of the transimpedance [4] in the passband is given by

$$|Z_{Tf}| = \frac{1}{2} g_m Z_{ng} Z_{nd} n \quad (1)$$

where g_m is the transimpedance of the MESFET and n is the number of MESFETs in the distributed preamplifier structure. The equivalent input noise

current density of the distributed preamplifier [4] is given by

$$\begin{aligned}
\langle i^2 \rangle = & (1 + \frac{2 \sin n\phi}{n \sin \phi} \cos n\phi + \frac{1}{n^2} \left(\frac{\sin n\phi}{\sin \phi} \right)^2) \langle i_{Z_{\pi g}}^2 \rangle \\
& + \frac{|Z_{\pi d}|^2}{4|Z_{\pi g}|^2} \langle i_{Z_{\pi d}}^2 \rangle \\
& + \frac{1}{4} \sum_{r=1}^n (A(r, \phi)^2 + B(r, \phi)^2) \langle i_g^2 \rangle \\
& + \frac{n|Z_{\pi d}|^2}{4|Z_{\pi g}|^2} \langle i_d^2 \rangle \\
& + \frac{Z_{\pi d}}{2|Z_{\pi g}|^2} \sum_{r=1}^n \operatorname{Re} \left(Z_{\pi g} (A(r, \phi) + jB(r, \phi)) e^{j(n-2r-1)\phi} \langle i_g i_d^* \rangle \right)
\end{aligned} \tag{2}$$

where

$$\langle i_{Z_{\pi g}}^2 \rangle = \frac{4kT}{Z_{\pi g}}, \quad \langle i_{Z_{\pi d}}^2 \rangle = \frac{4kT}{Z_{\pi d}},$$

$$A(r, \phi) = \frac{(n-r+1)}{n} \cos(2r-1)\phi + \frac{\sin(r-1)\phi}{n \sin \phi} \cos(r-1)\phi + 1$$

and

$$B(r, \phi) = \frac{(n-r+1)}{n} \sin(2r-1)\phi + \frac{\sin(r-1)\phi}{n \sin \phi} \sin(r-1)\phi$$

$\phi = \omega \sqrt{L_g C_{gs}} = \omega \sqrt{L_d C_{ds}}$, k is Boltzmann's constant, and T is temperature in degrees Kelvin. The first two terms of $\langle i^2 \rangle$ are the noise densities produced by the terminations $Z_{\pi g}$ and $Z_{\pi d}$. The remaining contributions are the noise sources produced by the MESFET. $\langle i_g^2 \rangle$ and $\langle i_d^2 \rangle$ are the gate and drain noise sources for the MESFET, and $\langle i_g i_d^* \rangle$ is the correlation between the gate and drain noise sources [5]. $\langle i_{Z_{\pi g}}^2 \rangle$ dominates the noise contribution in $\langle i^2 \rangle$ [6]. Thus to reduce this noise contribution, one must make the termination $Z_{\pi g}$ as large as possible. The plots $\langle i^2 \rangle$ versus frequency are shown in Fig. 2 for two impedances $Z_{\pi g} = 50 \Omega$ and 100Ω . The following parameters were used in the calculation: $Z_{\pi d} = 50 \Omega$, $L_g = 0.5 \text{ nH}$ ($Z_{\pi g} = 50 \Omega$), $L_g = 2 \text{ nH}$ ($Z_{\pi g} = 50 \Omega$), $n = 5$, $c_{gs} = 200 \text{ fF}$, $g_m = 20 \text{ mS}$ and p-i-n photodiode capacitance $c_d = 200 \text{ fF}$.

Results

A monolithic distributed preamplifier was designed, Fig. 3, using Touchstone by HP/Eesof with $Z_{\pi g} = 100 \Omega$ and constructed using a $0.8 \mu\text{m}$

self-aligned gate process at NT. The preamplifier chip was then wire bonded to a $35 \mu\text{m}$ NT p-i-n. The bond wire inductance was $L_s = 2 \text{ nH}$, which was used as inductive tuning [6]. Measured results of the distributed preamplifier are shown in Fig. 4. It can be seen that the receiver has an equivalent input current density of $8 \text{ pA}/\sqrt{\text{Hz}}$, a transimpedance gain of $46 \text{ dB}\Omega$, and a 3 dB bandwidth of 8 GHz . Using $8 \text{ pA}/\sqrt{\text{Hz}}$ and 8 GHz bandwidth, the predicted best receiver sensitivity can be shown to be -21 dBm [7] for a 10 Gb/s system.

Conclusion

A low noise broadband GaAs MESFET monolithic distributed preamplifier has been presented. High gate line matching impedance improves the noise performance of the distributed preamplifier. A monolithic distributed preamplifier demonstrated -3 dB bandwidth of greater than 8 GHz and an average input noise current density of $8 \text{ pA}/\sqrt{\text{Hz}}$. The predicted best receiver sensitivity at 10 Gb/s is -21 dBm . To our knowledge, the preamplifier described has the lowest noise performance in this band based on $0.8 \mu\text{m}$ GaAs MESFET technology.

Acknowledgments

Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), Telecommunications Research Institute of Ontario (TRIO) and Queen's University ARC are gratefully acknowledged. I would also like to thank J.C. Cartledge for his helpful discussions and comments.

References

- [1] M. Miyashita et. el., "An Ultra Broadband GaAs MESFET Preamplifier IC for 10 Gb/s Optical Communication System," *IEEE Trans. on Microwave Theory and Techn.*, vol. 40, No. 12, 1992, pp. 2439-2443.
- [2] N. Takaghi et. el., "A 10 Gb/s optical detection experiment using a 23 GHz bandwidth balanced receiver," *IEEE Trans. on Microwave Theory and Tech.*, vol. 38, 1990, pp. 1900-1905.
- [3] J. Hankey et el, "A Low Noise Optical Receiver from 2 to 20 GHz," *Optical Fiber*

Conference, OFC' 94, Feb. 20-25, 1994, pp. 155-156.

[4] A.P. Freundorfer, "A MMIC low noise travelling wave front-end for an optical receiver," *ANTEM Symposium on Communications*, Ottawa, Canada, May 29-June 1, 1994, pp. 555-558.

[5] K. Ogawa, "Noise caused by GaAs MESFET in optical receivers," *Bell Syst. Technical J.*, vol. 60, 1981, pp. 923-928.

[6] A.P. Freundorfer and P. Lionais, "A low noise travelling wave front-end for coherent optical receivers," Optical Fiber Conference, OFC' 94, Feb. 20-25, 1994 pp. 160-161.

[7] J.R. Barry and E.A. Lee, "Performance of Coherent Optical Receivers," *Proceedings of IEEE*, vol. 78, no. 8, Aug. 1990, pp. 1369-1394.

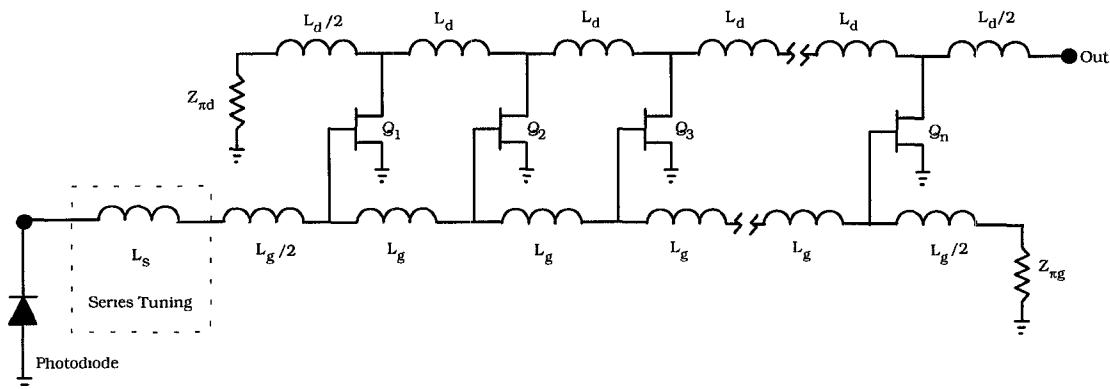


Fig. 1 Distributed preamplifier with series tuning inductor.

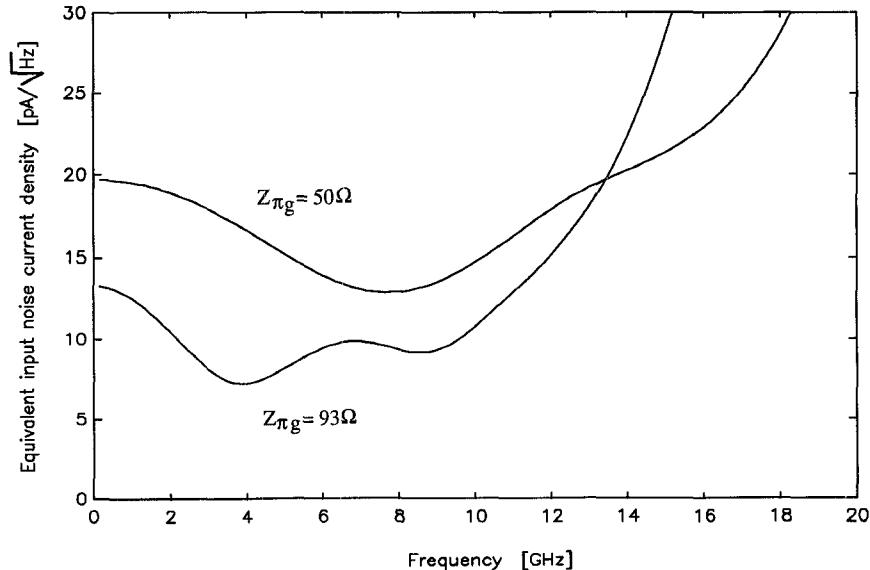


Fig. 2 The modelled equivalent input noise current densities of various components in the distributed preamplifier. $L_s = 0$.

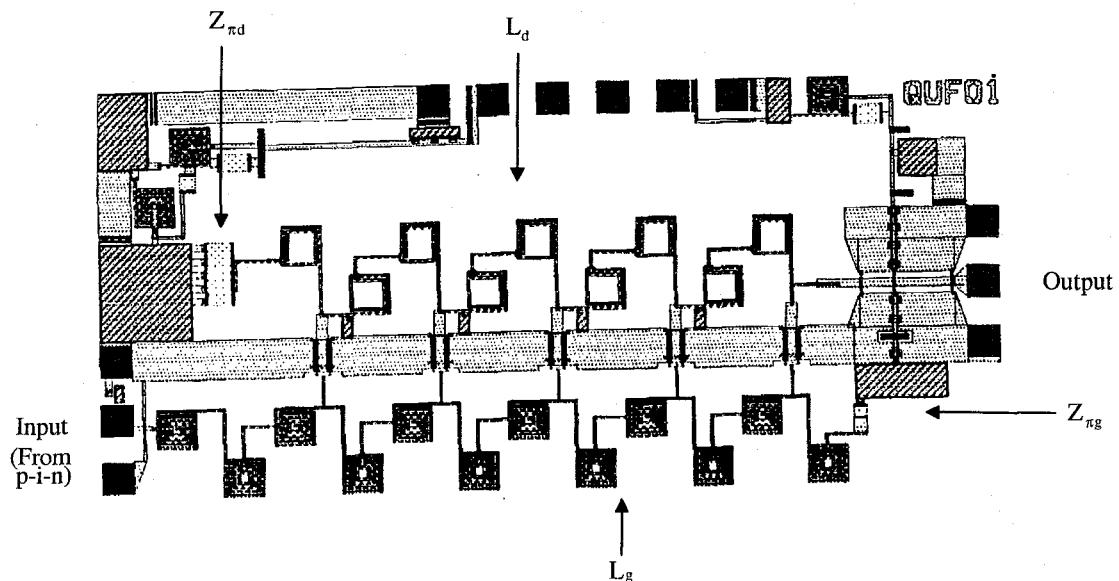


Fig. 3 Distributed preamplifier layout. Note the large inductance of L_g is to obtain $Z_{\pi g}=100 \Omega$.

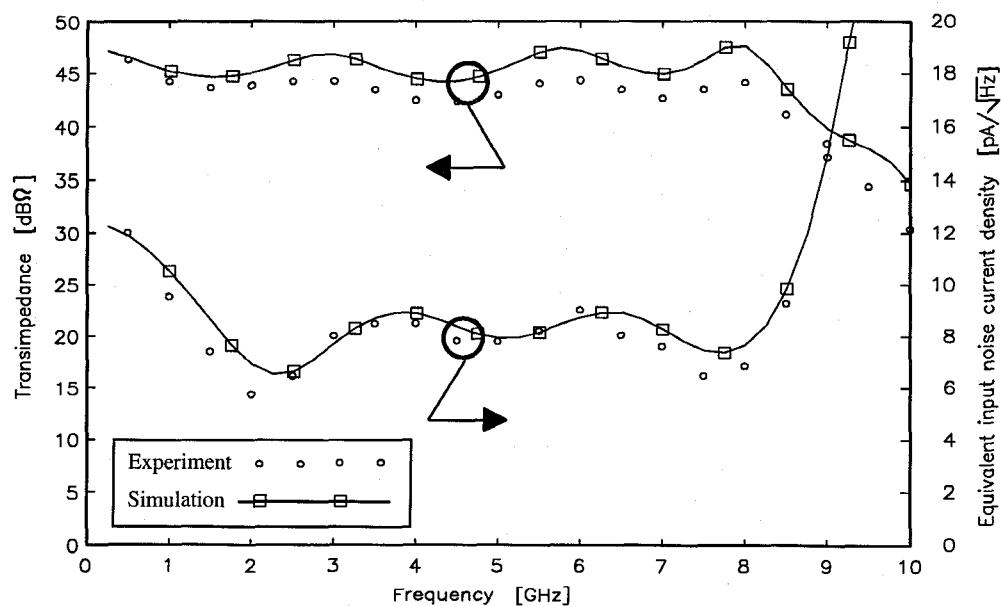


Fig. 4 The simulated and measured transimpedance and equivalent input noise current densities of a distributed preamplifier.